

Pierre Christian

Testing Einstein's Gravity with Black Holes

Teen Astronomy Cafe Oct 2019

Why did I choose to be an astrophysicist?

Why did I choose to be an astrophysicist?

The most interesting things are in space!

Why did I choose to be an astrophysicist?

The most interesting things are in space!

Exoplanets: Alien worlds outside our solar system

Why did I choose to be an astrophysicist?

The most interesting things are in space!

Galaxies: Conglomeration of many billions of stars

Image credit: Robert Gendler

Why did I choose to be an astrophysicists?

The most interesting things are in space!

Black Holes

Why did I choose to be an astrophysicist?

The most interesting things are in space!

Black Holes

Part I: What are black holes?

In **general relativity**, even light is affected by gravity

In **general relativity**, even light is affected by gravity

If I throw a ball from the surface of a planet, it will fall back down due to gravity

In **general relativity**, even light is affected by gravity

If I throw a ball from the surface of a planet, it will fall back down due to gravity

In **general relativity**, even light is affected by gravity

If I throw a ball from the surface of a planet, it will fall back down due to gravity

In **general relativity**, even light is affected by gravity

If I throw a ball from the surface of a planet, it will fall back down due to gravity

In **general relativity**, even light is affected by gravity

If I throw a ball from the surface of a planet, it will fall back down due to gravity

Our current theory of gravity is **general relativity** Proposed by Albert Einstein (1879-1955)

In **general relativity**, even light is affected by gravity

If I throw a ball from the surface of a planet, it will fall back down due to gravity

Question: If light is affected by gravity, can there be objects where light also falls back down due to gravity?

Black hole: A region of such strong gravity that even light cannot escape

-) The "denser" a planet, the stronger the gravity

Black hole: A region of such strong gravity that even light cannot escape

-) The "denser" a planet, the stronger the gravity

Black hole: A region of such strong gravity that even light cannot escape

-) The "denser" a planet, the stronger the gravity

Black hole: A region of such strong gravity that even light cannot escape

-) The "denser" a planet, the stronger the gravity

Squeezing the Earth causes it to have **stronger** gravity: same **mass**, smaller **volume**, means density goes **up**

Black hole: A region of such strong gravity that even light cannot escape

- -) The "denser" a planet, the stronger the gravity
- -) The object that can trap light must be extremely dense!

Black hole: A region of such strong gravity that even light cannot escape

- -) The "denser" a planet, the stronger the gravity
- -) The object that can trap light must be extremely dense!

Black hole: A region of such strong gravity that even light cannot escape

- -) The "denser" a planet, the stronger the gravity
- -) The object that can trap light must be extremely dense!

Singularity: A point of infinite "density"

Black hole: A region of such strong gravity that even light cannot escape

- -) The "denser" a planet, the stronger the gravity
- -) The object that can trap light must be extremely dense!

Event Horizon: A boundary where nothing can escape, not even light!

Singularity: A point of infinite "density"

Black hole: A region of such strong gravity that even light cannot escape

Position

To get a better understanding of black holes, consider the following picture

Position

I, standing on a flat plane, shoot two beams of light going opposite directions, **no** black hole yet in this picture!

Position

I, standing on a flat plane, shoot two beams of light going opposite directions, **no** black hole yet in this picture!

Position

The light beams travel away from me at the speed of light

Position

The light beams travel away from me at the speed of light

Position

Position

Nothing can travel faster than light (postulate of relativity)

Position

Nothing can travel faster than light (postulate of relativity)

- -) I can only move within these lines
- -) Everything that I can affect is within these lines (causal cone)

Position

Nothing can travel faster than light (postulate of relativity)

- -) I can only move within these lines
- -) Everything that I can affect is within these lines (causal cone)

Nothing can travel faster than light (postulate of relativity)

- -) I can only move within these lines
- -) Everything that I can affect is within these lines (causal cone)

Nothing can travel faster than light (postulate of relativity)

- -) I can only move within these lines
- -) Everything that I can affect is within these lines (causal cone)

Nothing can travel faster than light (postulate of relativity)

- -) I can only move within these lines
- -) Everything that I can affect is within these lines (causal cone)

cannot move here because to do so I need to travel faster than light!

Remember, there is **no** black hole yet in this picture! I am trapped Inside these lines not because there is a black hole, but because I cannot move faster than light!

cannot move here because to do so I need to travel faster than light!

The same picture near a black hole

infinite "density"

The same picture near a black hole

Distance away from the singularity

The singularity does not move, so it just goes up in time

The same picture near a black hole

Distance away from the singularity

Far from the singularity (far from the black hole), my causal cone looks the same as before

The same picture near a black hole

Distance away from the singularity

In general relativity, **light** is affected by gravity!

The same picture near a black hole

Distance away from the singularity

In general relativity, **light** is affected by gravity!

The same picture near a black hole

Distance away from the singularity

In general relativity, light is affected by gravity!

The same picture near a black hole

Distance away from the **singularity**

Distance away from the singularity

Remember, I can only move within these lines

The same picture near a black hole

Remember, I can only move within these lines

The same picture near a black hole

Remember, I can only move within these lines

In fact, in a technical sense, within the event horizon time and space switch

NOIR Lab

What are black holes?

The same picture near a black hole

Remember, I can only move within these lines

In fact, in a technical sense, within the event horizon time and space switch

Black hole: A region of such strong gravity that even light cannot escape

NOIR Lab

What are black holes?

Black hole: A region of such strong gravity that even light cannot escape

In astrophysics we often don't care about what's inside the event horizon, so we draw black holes like this:

Event Horizon: A boundary where nothing can escape, not even light!

Singularity: hidden inside the event horizon

Part II: How do we take photographs of black holes?

If not even light can escape a black hole, how can we see them?

While a black hole is invisible, the region around it is **bright**

While a black hole is invisible, the region around it is **bright**

-) Gas particles **speed up** as they get sucked into the black hole

While a black hole is invisible, the region around it is **bright**

- -) Gas particles **speed up** as they get sucked into the black hole
- -) Friction heats falling material, turning them into bright, hot plasma

Gas particles: the accretion disk is composed of particles falling into the BH

Accretion disk: hot, bright plasma, what telescopes actually "sees"

Part III: Black holes as laboratories of strong gravity

Part III: Black holes as laboratories of strong gravity

Let's check whether Einstein was right

Is Einstein's theory of gravity (general relativity) correct?

We can model black holes using general relativity

Is Einstein's theory of gravity (general relativity) correct?

We can model black holes using general relativity

How do we know whether this is really the right model?

How do we know whether black holes in space are Einstein's black hole?

Can we devise astrophysical observations to test which of these are true?

Einstein's black hole: A black hole as we know it

?!?!?

Gravitational lensing

Lens: Massive object

Gravitational lensing

The black hole lenses its own accretion disk!

The black hole lenses its own accretion disk!

The black hole lenses its own accretion disk!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

Warning: Computer simulation, not a real black hole!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

The black hole lenses its own accretion disk!

Prediction: Einstein's black hole looks circular!

Thank you!

Another problem: black holes are very small and very far away!

Another problem: black holes are very small and very far away!

Another problem: black holes are very small and very far away!

M87's BH: 50 million light-years away, ~10s of microarcseconds diameter

Can I resolve something with my telescope?

Can I resolve something with my telescope?

The larger the telescope, the larger the resolution!

*For the experts: In addition, the **smaller** the wavelength, the **larger** the resolution

Can I resolve something with my telescope?

The larger the telescope, the larger the resolution!

*For the experts: In addition, the **smaller** the wavelength, the **larger** the resolution

Radio interferometry:

By properly combining the signal coming from **two telescopes**, we can simulate "combined telescope"

Radio interferometry:

By properly combining the signal coming from **two telescopes**, we can simulate "combined telescope"

Resolution of the combined telescope:

as if we have a telescope of size L

Radio interferometry:

By properly combining the signal coming from **two telescopes**, we can simulate "combined telescope"

Resolution of the combined telescope:

as if we have a telescope of size L

Radio interferometry:

By properly combining the signal coming from **two telescopes**, we can simulate "combined telescope"

Resolution of the combined telescope:

as if we have a telescope of size L

Arizona

L

South Pole

Why is this important?

Why is this important?

The Kerr-Newman black hole is not derived just using general relativity

Why is this important?

The Kerr-Newman black hole is not derived just using general relativity

In addition it requires the following to be true:

Why is this important?

The **Kerr-Newman** black hole is not derived just using general relativity

In addition it requires the following to be true:

- 1) There is no closed timelike loop (no time travel)
- 2) Nature abhors singularities without event horizons

Why is this important?

The **Kerr-Newman** black hole is not derived just using general relativity

In addition it requires the following to be true:

- 1) There is no closed timelike loop (no time travel)
- 2) Nature abhors singularities without event horizons

Testing whether **Kerr-Newman** black holes are real is not only a test of relativity, but also of these basic philosophical principles

1) There is no closed timelike loop (no time travel)

Position

1) There is no closed timelike loop (no time travel)

1) There is no closed timelike loop (no time travel)

1) There is no closed timelike loop (no time travel)

2) Nature abhors singularities without event horizons

Event Horizon: A boundary where nothing can escape, not even light!

Singularity: A point of infinite "density"

2) Nature abhors singularities without event horizons

Singularities are **bad**, because there physics as we know it breaks down

2) Nature abhors singularities without event horizons

Singularities are bad, because there physics as we know it breaks down

2) Nature abhors singularities without event horizons

Singularities are bad, because there physics as we know it breaks down

2) Nature abhors singularities without event horizons

Singularities are **bad**, because there physics as we know it breaks down

2) Nature abhors singularities without event horizons

Singularities are **bad**, because there physics as we know it breaks down

2) Nature abhors singularities without event horizons

Novel Astrophysical Constraints on Black Holes

a dissertation presented
by
Pierre Christian
to
The Department of Astronomy

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of

> Harvard University Cambridge, Massachusetts

Astronomy and Astrophysics

Singularities are **bad**, because there physics as we know it breaks down

2) Nature abhors singularities without event horizons

Singularities are **bad**, because there physics as we know it breaks down

However, if it is **hidden** in a horizon, it is *more* okay, because nothing can escape the event horizon, so the *badness* is **imprisoned** and not allowed to spoil the rest of the Universe.

Theoretical astrophysics:

Studying the Universe through applying principles of physics

Theoretical astrophysics:

Studying the Universe through applying principles of physics

Contrast with Observational astrophysics:

Studying the Universe by observing it, usually through a telescope

Theoretical astrophysics:

Studying the Universe through applying principles of physics

Contrast with Observational astrophysics:

Studying the Universe by observing it, usually through a telescope

Theoretical astrophysics research is done "in your head" with pen and paper, or with a computer

Example theoretical astrophysics questions:

What happens to a person close to a black hole? What is inside a black hole? What happens at the end of time?

You might enjoy theoretical astrophysics if you enjoy:

- -) Solving math problems
- -) Computer programming
- -) Abstract thinking
- -) Don't like staying up late looking at things through a telescope

You might enjoy theoretical astrophysics if you enjoy:

- -) Solving math problems
- -) Computer programming
- -) Abstract thinking
- -) Don't like staying up late looking at things through a telescope

Majors to consider in college for theoretical astrophysics:

- -) Physics
- -) Astronomy
- -) Mathematics
- -) Computer science
- -) Statistics

