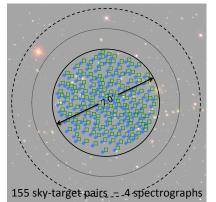
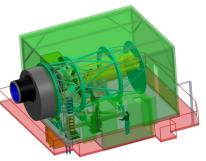
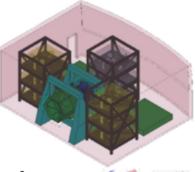
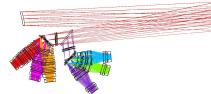
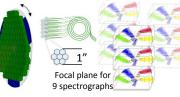

Wide Field Optical Spectrograph - WFOS **Architecture Downselect** Slit based monolithic - versus - fiber-fed modular


Key Science areas driving the designs:


- IGM/CGM tomography and characterization
- Stellar populations throughout the local group
 - High redshift galaxy evolution
 - Transient science


Xchange-WFOS


Fiber-WFOS - baseline 4 spectrographs



Context: WFOS is a first light instrument. The 2016/2017 OMDR phase concluded that the previous concept had insurmountable technical challenges. During the OMDR and WFOS Conceptual Design 1 phases, fiber and reconfigurable (Xchange) spectrograph architectures were developed (2017/2018).

Top: Illustrations of the sampling of the TMT focal plane for the Xchange (far left) and fiber fed forms of the WFOS instrument when sky nodding. 7' diameter field is for 4 modular spectrographs with 22" pitch, 100% overlap fiber positioners.

Left: Xchange-WFOS instrument design concept (upper) and optical layout (lower) showing articulated camera positions for high spectral resolution modes.

Right: Modular Fiber-WFOS instrument design concept showing the full potential 9 spectrographs and 700 fiber collectors over 10' field (baseline is 4 spectrographs).

Background subtraction with Fibers

Analysis shows that for observations lasting many hours, requiring sky subtraction precision of 0.1%, negligible fiber systematics are expected when skynodding.

	Xchange-WFOS	Fiber-WFOS
Spectral resolution	Baseline 1500 – 5000, grating dependent	Fixed 3500 to 5000. Binning for lower resolution
Limiting magnitude	~24.1 g(AB) in 1hr S/N=5	~24.0 g(AB) (Compare to 22.1 for GMOS)
Wavelength coverage	0.31-1.0μm continuous at R=1500. 40nm in the blue, 140nm in the red at R=4500	0.31-1.0μm continuous at R=5000

https://www.ucolick.org/home/facilities/instruments/wfos.html

Principal investigator: Kevin Bundy **Project manager**: Maureen Savage (UC Observatories)

Chuck Steidel (Caltech) Cross partnership development team **Project scientist:**

Downselection process and timeline:

- Technical review 4/5 April, 2018 Concluded all architectures are technically feasible
- Re-assessment of top level WFOS science requirements by SAC, using community input 26 July, 2018
- Downselect to single architecture Early October 2018

