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Free-floating planets (FFPs) are planetary-mass objects that are not bound to host stars. First
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discovered in the 1990s, their nature and origin are still largely unconstrained because of a

lack of large homogeneous samples enabling a statistical analysis of their properties. To date,

most FFPs have been discovered using indirect methods; micro-lensing surveys have proven

particularly successful to detect these objects down to a few Earth masses1, 2. However, the

ephemeral nature of micro-lensing events prevents any follow-up observations and individual

characterisation. Several studies have identified FFPs in young stellar clusters3, 4 and the

Galactic field5 but their samples are small or heterogeneous in age and origin. Here we

report the discovery of between 70 and 170 FFPs (depending on the assumed age) in the

region encompassing Upper Scorpius (USC) and Ophiuchus (Oph), the closest young OB

association to the Sun. It is the largest homogeneous sample of nearly coeval FFPs discovered

to date. We found an excess of FFPs by a factor of up to seven compared to core-collapse

models predictions6–8, demonstrating that other formation mechanisms may be at work. We

estimate that ejection from planetary systems might have a contribution comparable to that

of core-collapse in the formation of FFPs. Therefore, ejections due to dynamical instabilities

in giant exoplanet systems must be frequent within the first 10 Myr of a system’s life.

To date, most exoplanets have been detected through radial velocity or photometric modu-

lations induced in their host stars9–13. As such, the vast majority of known exoplanets are gravita-

tionally bound to stars. However, several free-floating planets (FFPs) have been discovered over

the last two decades in astro-photometric surveys of nearby star-forming regions3, 4, 14–18, young

associations19–22, the solar neighbourhood23, 24 and in gravitational micro-lensing surveys of the

Galactic field5. These ultra-faint objects are incapable of sustaining nuclear fusion and steadily
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fade in time, making them easier to observe when they are very young. FFPs are compact objects

of less than about 13 Jupiter masses that are not bound to a star or brown dwarf but rather wander

among them. At present, four scenarios have been proposed for the formation of these extreme ob-

jects: a) a scaled-down version of star formation via core-collapse25, 26; b) within a protoplanetary

disc, either like gas-giant planets through core accretion27 or like companions through gravita-

tional fragmentation of massive extended discs28, 29, followed by ejection by dynamical scattering

between planets in both cases30; c) as aborted stellar embryos ejected from a stellar nursery before

the hydrostatic cores could build up enough mass to become a star31 and d) through the photo-

erosion of a prestellar core by stellar winds from a nearby OB star32. While direct observational

evidence confirms that these different processes are all at work33, 34, we still do not understand their

relative contributions to the overall FFP population.

Here we present a search for FFPs in the 171 deg2 region occupied mainly by Upper Scorpius

(USC) and Ophiuchus (Oph). We selected an elliptical area centred in (RA = 243.5◦, Dec =

−23.1◦) with a semi-major axis of 8.5◦ in RA and a semi-minor axis of 6.4◦ in Dec where the spatial

and temporal coverage of the observations is the best. This large complex represents the perfect

hunting ground to search for young and nearly coeval FFPs thanks to its proximity (120–145 pc)

and youth (1–10 Myr35–38). We combined our ground-based observations in the optical and infrared

with wide-field images available in various public archives (see methods). We processed and

analysed a total of 80 818 individual wide-field images acquired with 18 different cameras over the

past 20 years to obtain a final catalogue, the Dynamical Analysis of Nearby ClustErs (DANCe)39

catalogue, containing positions, proper motions and multi-wavelength photometry (grizyJHK)
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for more than 26 million objects. We complemented the DANCe catalogue with the astrometry

and photometry of the Gaia Data Release 2 (Gaia DR2)40 and Hipparcos41 catalogues. We used

this dataset to compute membership probabilities to USC and Oph using a probabilistic model of

the distribution of the observable quantities in both the cluster and background populations (see

methods). To identify the FFPs we used the parameter space that contains the largest amount of

parameters and sources with complete information, namely proper motions and iJHK photometry.

We identified 3 455 high probability candidate members in the area covered by our study,

including between 70 and 170 FFPs depending on the age assumed for the region. Approximately

20% of the members are new compared to previous studies17, 42–46, and this proportion increases

to 75% in the planetary mass domain. It is the largest and most homogeneous sample of FFPs

identified using direct images so far, and it constitutes an excellent benchmark to test star and

planet formation theories. Figure 1 shows the area covered by our survey in the optical and radio

wavelengths. The members are distributed all over the region. The majority of members (and FFPs)

lay in the area of USC, where the extinction by the interstellar medium is lower (AV < 1 mag).

We used our comprehensive membership analysis to study the origin of the FFP population

in USC and Oph. We computed the number density of members as a function of their masses. This

“mass function” of the region constitutes a fundamental constraint for formation theories because

different mechanisms predict different relative abundances of stellar, sub-stellar and planetary-

mass objects. The transformation from observed luminosities to masses requires knowing the age

and using evolutionary models. The age spread of the region35–38, as well as the complex and
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overlapping spatial and kinematic distributions of the different coexisting populations, prevented

us from disentangling the various groups and assigning ages to individual objects. Instead, we

chose to assign ages of 3, 5 and 10 Myr for the entire sample and assumed that the underlying real

mass distribution must be included between these borderline cases. We used the entire spectral

energy distribution available for each object and the theoretical evolutionary models47, 48 to infer

the individual mass of each member (see methods). Figure 2 shows colour-magnitude diagrams of

the members in two different spaces. We overplotted the theoretical isochrones at the extreme ages

mentioned above to illustrate the uncertainties in the mass inherited from the lack of individual

precise ages.

The J apparent magnitude distribution (Fig. 3, upper panel) is a direct product of the ob-

servations, and thus, it is not affected by the uncertainties and errors in the transformation from

luminosities to masses. Thanks to improved statistics achieved with our larger sample we unam-

biguously identified a dip at planetary masses (apparent magnitude J ∼ 17.8 mag, corresponding

to absolute magnitude MJ ∼ 12 mag and masses 7–13 MJup depending on the age assumed)

which was also reported in volume-limited samples in the solar neighbourhood49, 50. Are we seeing

changes relative to the formation mechanisms? Could this be the “real” frontier between brown

dwarfs and FFPs? To our knowledge, the origin of this dip remains unknown and more studies are

needed to answer these questions. However, the presence of this feature at the young ages of USC

and Oph (1–10 Myr) suggests that it must be the result of the formation and/or early evolution of

these objects.
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Figure 3 (middle panel) shows the mass function at 5 Myr (which can be considered an in-

termediate age of the entire complex); the mass functions at 3 and 10 Myr define the upper and

lower confidence intervals. A number of details and features clearly significant in the magnitude

distribution (in particular the dip mentioned above) are blurred and lost in the mass distribution

likely due to the uncertainties related to the transformation from luminosity to mass. Our magni-

tude and mass distributions show a rich population of FFPs. We evaluated the contamination rate

in this sample, mostly due to background reddened giant stars and background Galaxies, using two

different methods. First, using synthetic data51, we estimated a contamination rate in the planetary

mass domain smaller than 4%. Second, using sources for which both DANCe and Gaia DR2 mea-

surements are available (in the range 9 < J < 14 mag, hence above the planetary mass regime)

and assuming that the Gaia DR2 sample represents the ground truth, we estimated a contamina-

tion rate of approximately 8%. The real contamination rate of FFPs is likely in between these two

values and should be confirmed by follow-up spectroscopic observations. The number of FFPs

reported in our analysis must constitute a lower limit of the actual total number of FFPs since our

analysis is expected to miss the objects most affected by extinction (AV & 3 mag), as well as

objects displaying a large near-infrared excess related to the presence of circumstellar material.

The fraction of FFPs in our sample, meaning the relative proportion of FFPs to stars and

brown dwarfs, is 0.045+0.023
−0.029, where the uncertainties come from the uncertainty on individual ages

(between 3 and 10 Myr). We estimated this fraction by first integrating the observational mass

function (Fig. 3, middle panel) in the FFP (4–13 MJup), brown dwarf (13–75 MJup) and stellar

(0.075–10 M�) mass regimes and then computing the ratio between FFPs and brown dwarfs plus
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stars. While previous studies reported a similar fraction of FFPs3, 4, our sample doubles the absolute

number of FFPs in a single association, which significantly reduces the statistical uncertainties in

the mass function. A recent photometric study in the central 6 deg2 region of USC46 found a ratio

of 1.0–1.5 planetary-mass members per square degree, this result is broadly consistent within the

statistical uncertainties with the ratio we find in the 171 deg2 area covered by our survey (0.5–1.0

planetary-mass members per square degree).

In the high mass regime (> 1 M�), our mass function has a slope of Γ = −1.2 ± 0.2

(measured in units of logarithmic mass), compatible with the Salpeter slope52 and with all the

models and simulations considered here6–8, 53, 54. In the substellar mass regime (< 75 MJup), our

observational mass function (Fig. 3, bottom) has a slope of Γ = 0.62+0.13
−0.01 (measured in units of

logarithmic mass), similar to values reported in the field population for L, T and Y dwarfs23, 24 and

to models including several channels of substellar object formation53, 54. The mass function over

the low-mass stars and high-mass brown dwarfs regime (0.03–1 M�) is compatible with a log-

normal distribution6, 7. When integrating the analytical mass function of models including mostly

core-collapse formation 6, 7 over the planetary mass range (4–13 MJup), we find that they predict a

fraction of only 0.009−0.019 FFPs, underestimating up to seven times our measurement (depend-

ing on the age assumed). This excess of FFPs with respect to a log-normal mass distribution is in

good agreement with the results reported in σ Orionis4. Interestingly, our observational mass func-

tion also has an excess of low-mass brown dwarfs and FFPs with respect to simulations including

both core-collapse and disc fragmentation8. This suggests that some of the FFPs in our sample

could have formed via fast core-accretion in discs rather than disc fragmentation. We also note
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that the continuity of the shape of the mass function at the brown dwarf/planetary mass transition

suggests a continuity in the formation mechanisms at work for these two classes of objects.

Hereafter, we use the current knowledge of planet and star formation to discuss the origin of

FFPs. The fraction of observed FFPs (fFFP observed) is the sum of FFPs formed by ejection from a

disc (fFFP ejected), the FFPs formed by core-collapse (fFFP core collapse) and the FFPs formed by other

mechanisms (fFFP other, including photo-evaporation and ejection from a prestellar cluster). The

fraction of FFPs ejected from a planetary system (fFFP ejected) depends on the fraction of stars and

brown dwarfs that form giant planets (fgiant), on the fraction of such planetary systems that become

unstable (funstable), and on the number of ejected planets per unstable system (nejected). This for-

mulation is similar to that of previous studies30 and has the following expression in our study, for

objects more massive than 4 MJup.

fFFP observed = fFFP ejected + fFFP core collapse + fFFP other

= fgiant · funstable · nejected +

∫ 13 MJup

4 MJup

ξcore collapse(m) dm+ fFFP other

(1)

The fraction of stars that forms giant planets (fgiant) is constrained by the observed demo-

graphics of giant exoplanets measured by radial velocity, direct-imaging, transit and micro-lensing

surveys11, 12, 55–62. The planetary occurrence rate depends on many astrophysical parameters (the

host star and planet masses, orbital separation, stellar metallicity, and others), and each of the

techniques above mentioned is sensitive to a specific region of the parameter space63. Therefore,

we combined the occurrence rates obtained with different techniques to minimise the possible ob-
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servational biases. In Table 1, we summarise the occurrence rates obtained by different authors

and describe the properties of each study. The fraction of planetary systems that become unstable

(funstable) must be at least 75% to match the observed distribution of giant planet eccentricities64–68.

A minimum of two planets per system is needed for instability to happen, and indeed, many gi-

ant exoplanets are found in multiple planetary systems or contain hints (such as radial velocity

trends) of additional companions61. The number of ejected planets per unstable system (nejected)

scales with the number of planets involved in the instability30. We consider a simplified scenario

in which planetary systems contain two to four giant planets, the three cases being equally likely,

and every time a system becomes unstable it ejects one planet. With these assumptions, we find

nejected ∼ 1/3 · 2 · 1/2 + 1/3 · 3 · 1/3 + 1/3 · 4 · 1/4 ∼ 1.

Combining the upper and lower limits on the three factors defining the fraction of FFPs

ejected from planetary systems, we obtain fFFP ejected ∼ 0.005 − 0.021, which represents between

10–130% of the FFP population we found. The large uncertainty in this percentage is due to the

lack of precise masses in our observations on the one hand (which itself is related to the lack of

precise individual ages) and to the uncertainty on the occurrence rate of planets and their ejection

process on the other hand. A percentage of planets formed by ejection above 100% is obviously of

no physical meaning and only reflects the limitations of our assumptions and simplifications, which

are based on the best current knowledge of planetary systems and the latest evolutionary models.

This result nevertheless suggests that ejection from planetary systems is a significant mechanism

for FFPs formation since at least 10% of them must have formed by ejection from a disc.
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The discovery of a large population of FFPs in USC and Oph also bears important implica-

tions on the formation and early evolution of planetary systems and, specifically, on the timescale

of the processes involved. N-body simulations indeed predict that most dynamical instabilities

happen within 0.1–1 Myr of the planets’ formation, although there do exist configurations that

produce later instabilities64–66, 69. Our results suggest that giant planet systems must form and be-

come dynamically unstable within the observed lifetime of the region of 3−10 Myr to contribute to

the population of FFPs. While the instability among the Solar System’s giant planets70 was much

less violent than those for the mass range of FFPs in our sample71, current studies suggest that it

may have also happened early.72, 73

Instabilities can also be the result of close stellar encounters: numerical simulations have

shown that dynamical interactions with other stars in clustered environments may induce instability

in planetary systems or even liberate planets, enriching the FFP population69, 74. Recent studies

showing that the demographics of exoplanets depends on the stellar environment75 confirm that

such interactions must indeed play a role and contribute to the observed population of FFPs. Our

observations suggest that these encounters might take place within the first 10 Myr of a system’s

life.

The combined contributions of FFPs from core-collapse (13–118%) and ejection from plan-

etary systems (10–130%) derived from our analysis can explain the formation of the majority of

FFPs. But other mechanisms are known to be at work: photo-erosion of prestellar cores32, 76 has

been observed around massive B stars77, 78. Since USC is an OB association, some of the FFPs
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might have formed by photo-erosion. At the same time, given that photo-erosion can only occur

in the direct vicinity of relatively scarce OB stars, we can reasonably assume that the contribu-

tion of this mechanism to the overall FFP population must be fairly small. The contribution of

dynamical ejections of sub-stellar embryos in the parent prestellar cluster29, 31 could in principle

be significant source of FFPs. However, recent hydrodynamical simulations show that while such

dynamical ejections can produce a realistic population brown dwarfs, they under-produce FFPs8

(see Figure 3). This new sample of FFPs is by far the largest and most comprehensive known

to date and brings exciting opportunities to better understand their origin by performing statisti-

cally robust studies of their properties. The multiplicity, kinematics and properties of discs among

FFPs are expected to depend on the processes at work and should hold important clues on their

formation and early evolution. Finally, this new sample also provides an opportunity to study the

atmospheres of planetary-mass objects in the absence of a blinding host star.

Methods

DANCe catalogue

The COSMIC-DANCe project39 aims at performing deep and complete censuses of young

nearby associations down to the planetary mass regime. While the identification of young stars and

even brown dwarfs has become trivial with the advent of Gaia, finding the extremely faint free-

floating planets well beyond Gaia’s sensitivity limit remains a difficult challenge that requires deep

ground-based observations. The strategy chosen for COSMIC-DANCe relies on the measurement

of proper motions and multi-wavelength photometry and the use of modern data mining techniques
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to identify the faintest members. We therefore combine optical and infrared wide-field images

found in public archives with our own observations to obtain multi-epoch and multi-wavelength

catalogues of young clusters and star forming regions in the solar neighbourhood. The relatively

long time base-line encompassed by this data set (∼ 20 years) allows us to derive proper motions

with a precision of the order of 1 mas yr−1.

We searched in the European Southern Observatory (ESO), National Optical-Infrared As-

tronomy Research Laboratory (NOIRLab), Palomar Transient Factory (PTF), Canadian Astron-

omy Data Centre (CADC), Isaac Newton Group (ING), WFCAM Science Archive (WSA), and

Subaru-Mitaka-Okayama-Kiso-Archive (SMOKA) public archives for wide-field images inside

the area

235◦ < RA < 252◦,

−29.5◦ < Dec < −16.7◦.

(2)

We complemented the data found in these public archives with our observations with the Dark

Energy Camera (DECam) mounted on the Blanco telescope at the Cerro Tololo Inter-American

Observatory (CTIO), the VISTA and VST telescopes at ESO, the MegaCam camera at Canada-

France-Hawaii Telescope (CFHT), the NEWFIRM camera mounted on the 4 m telescope at the

Kitt Peak National Observatory (KPNO) and CTIO, the Hyper Suprime-Cam (HSC) mounted on

the Subaru telescope and the Wide Field Camera (WFC) mounted on the Isaac Newton Telescope

(INT). Supplementary Table 1 gives an overview of the various instruments used for this study.

We used the MAXIMASK and MAXITRACK softwares79 to detect problematic pixels (cosmic rays,
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dead/hot pixels, satellite trails, saturated stars and associated blooming artefacts, diffraction spikes)

and problematic astronomical images (e.g. tracking lost). Additionally, we discarded a few images

after a visual inspection because of their poor quality, limited sensitivity, or acquisition problems.

Finally, we collected 80 818 individual images of 18 different instruments, obtained over the past

20 years. The raw and processed data added up to almost 120 TB and were processed and analysed

on a dedicated HPC server. We extracted over 1.3 billion individual detections from these images.

The image reduction and the photometric and astrometric analysis are described in a previous

article39. Briefly, all images were either processed using their official pipeline (e.g. DECam,

HSC) or using Alambic80 following standard procedures. Sources were detected, extracted and

their astrometry and photometry measured using SEXTRACTOR81 and PSFEx82. The astrometric

and photometric calibration was then obtained using SCAMP83, and nightly sets of individual

images were average-combined (weighted by their exposure times) using SWarp84. Sources were

then extracted in these deeper nightly stacks, and proper motions and photometry measured using

SCAMP again. Deep stacks were also produced combining all available images obtained in a

given camera+filter and used for the photometry only. The details of the whole procedure can

be found in the original COSMIC-DANCE article39. In Supplementary Figure 1 we show the

precision of proper motions as a function of magnitude. Because of Gaia superiority compared to

our ground based observations we always use the astrometry from Gaia DR2 when available and

the astrometry from DANCe elsewhere. This explains the shift in precision observed at i ∼ 21 mag.

Our catalogue contains proper motions and photometry (grizyJHK) for 40 882 164 unique

sources. To optimise the number of sources with complete photometry (essential for the member-
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ship analysis, see description of the membership analysis) and accelerate the computational time

of the membership algorithm, we selected the area where the coverage of most instruments was

best. We defined an elliptical area centred in (RA = 243.5◦, Dec = −23.1◦) with a semi-major axis

of 8.5◦ in RA and a semi-minor axis of 6.4◦ in Dec. This selection roughly follows the coverage of

the UKIDSS near-infrared survey85 which we also used to define our DECam and HSC surveys.

The globular cluster NGC 6121 (µ∗α = −12.48 mas yr−1, µδ = −18.9 mas yr−1 86) is in-

side the area covered by our survey. To avoid contamination from its members in our sample, we

discarded the sources encompassed in a circular region of 12′ around the globular cluster centre

(RA= 245.896◦, Dec= −26.527◦). The final catalogue contains 28 062 542 sources and has a

median precision of< 1 mas yr−1 in proper motions for sources brighter than i < 20 mag. Supple-

mentary Figure 2 shows the density distribution of sources as a function of magnitude for different

filters. We used the maximum of this distribution as the approximate completeness limit in each

band. However, it depends on dust extinction and varies with position in the DANCe catalogue.

Membership analysis

We used a maximum likelihood approach to infer the parameters of the models describing

both the cluster and field populations51, 87. The algorithm models first the distribution in the space

of observables (parallaxes, proper motions and photometry) of the sources that belong to the field

and then iteratively searches for a maximum likelihood solution for the parameters of the model

that describes the distribution of observables for the cluster sources. In each iteration, the algo-

rithm calculates the membership probabilities using Bayes’ theorem and the fractions of cluster
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and field members as priors. The sources with missing data cannot be used to infer the cluster

and field models and, for that, it is of uttermost importance to define an adequate representation

space, i.e. a set of parameters which is the largest but at the same time contains a large fraction

of sources with complete observations. We note however that our algorithm uses the final model

(computed with complete sources) to obtain a membership probability for the sources with partial

information by marginalising over the missing information. We searched for members in three dif-

ferent catalogues: the DANCe catalogue (produced in this work), the Gaia DR2 catalogue and the

Hipparcos catalogue. These catalogues include very different photometric bands, and we decided

to run an independent analysis for each catalogue. The parameters (photometry and astrometry)

used in each case are described in the following paragraphs.

Initial members

We compiled a list of 2 865 published candidate members in the literature17, 42, 43, 45, 88 in the

area covered by this study. We cross-matched this list with each of our three catalogues (Hipparcos,

Gaia and DANCe) to obtain the initial list to start each analysis. In the case of Hipparcos, we

excluded Antares (α Sco) since it is a giant star, and therefore, it falls out of the empirical pre-main-

sequence isochrone. For the analysis with Gaia and DANCe, we excluded the most extinguished

members since they confuse our empiric isochrone.

Representation space

For the analysis with Hipparcos, we searched for members in the space of pmra, pmdec,

parallax, V , B−V , where all the sources in the catalogue have complete observations. For the
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analysis with Gaia, we used the representation space pmra, pmdec, parallax, GRP, G−GRP,

excluding the GBP band which is less accurate for cool dwarfs89. In this space, 7 768 856 sources

(97%) have complete observations. For the analysis with the DANCe catalogue, we used the rep-

resentation space pmra, pmdec, i, J , H , i −Ks. We combined the i band in the optical, which

has the largest coverage, with the infrared bands J,H,Ks where the ultracool dwarfs are best de-

tected. With this representation space, 10 483 667 sources have observations in all the photometric

bands, which represents 37% of the catalogue. We decided not to include the g, r, z, and Y bands

in the representation space because they reduced the number of sources with complete photometry,

specially for the coolest objects.

Field model

The model of the field population is a Gaussian mixture model (GMM) in the whole repre-

sentation space. We explored models with different number of Gaussians and used the Bayesian

information criterion (BIC) criterion to chose the final model. Since the Hipparcos catalogue has

a reduced number of sources, we explored models with several components between 1 and 20 and

selected six as the optimum choice according to the BIC. For the Gaia catalogue, we explored

models between 20 and 180 Gaussians and chose 60 as the optimum choice according to the BIC.

Finally, for the DANCe catalogue, we explored models between 60 and 300 and chose 100 com-

ponents.

Cluster model

The proper motion distribution of the region of USC and Oph is much more complex than
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that of open clusters previously analysed with this methodology51, 87, 90. While open clusters have

symmetric nearly Gaussian distributions in astrometry, this young region shows a rich substructure

far from Gaussian (see Supplementary Figure 3) and indicative of multiple kinematic populations.

To model this complex distribution, we used a GMM where the Gaussians are not necessarily

concentric and explored models with between 1 and 10 Gaussians. Since the Hipparcos catalogue

contains a very reduced number of sources, we found that a single multivariate Gaussian function

suffices to model the cluster proper motions and parallaxes. The Gaia and DANCe catalogues are

much larger and the number of Gaussians selected according to the BIC criterion is 5− 7 for Gaia

and 5 − 6 for DANCe (depending on the parameter pin, see below).

We ran the model with different internal probability thresholds87, i.e. different degrees of

completeness and contamination (pin = 0.5, 0.6, 0.7, 0.8, and 0.9), and for each we computed the

optimum threshold, popt, using synthetic data51, 87. In Supplementary Table 2, we show pin, popt,

and the number of members for each independent analysis (Hipparcos, Gaia DR2, and DANCe).

Final list of members

Membership probabilities obtained from the analysis with different pin values, as well as the

astrometry and photometry used in the Hipparcos, Gaia, and DANCe catalogues, are available at

Centre de Données astronomiques de Strasbourg (CDS). Choosing the best solution (the best pin) is

a non-trivial decision, which depends on the aim of the study. To study the magnitude distribution

and mass function, we need a list of members as complete as possible. For this reason, we prefer

solutions with low pin values which have greater completeness, although they can also be slightly
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more contaminated.

First, we compared the Gaia solutions obtained with different pin and found that 2 603

sources (94%) are the same in all the lists. Additionally, the contamination rate and true positive

rate computed with synthetic data are very similar in the five studies (see Supplementary Table 2),

so we had no prior reason to prefer one list to another. Therefore, we chose the list of pin = 0.5

as the final list of Gaia since it was the one with the largest number of members. Following an

analogous procedure with the DANCe solution, we also chose the list of pin = 0.5. With the Hip-

parcos study, we selected the solution of pin = 0.7, which represents a good compromise between

low contamination and high completeness. To this final list, we added the giant star Antares manu-

ally. Our final list of members contains 3 455 sources from the Hipparcos, Gaia DR2, and DANCe

catalogues.

Membership completeness

The completeness of our membership analysis depends on the completeness of the astro-

photometric catalogue and the membership algorithm. Our optical DECam and near-infrared

VISTA images and archival UKIRT images cover the entire area and ensure that the instrumental

i, Y, J,H,Ks sensitivities are fairly homogeneous spatially. To get an estimate of the complete-

ness in the substellar mass regime, we propagated the apparent magnitude completeness of the

DANCe catalogue to masses. The limiting magnitude to search for ultra-cool dwarfs is set by the

i band, which we estimated to be sensitive up to i ∼ 26 mag and complete up to i ∼ 23 mag (see

Supplementary Figure 2). This approximate magnitude limit completeness corresponds to masses
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between 7 MJup (assuming an age of 3 Myr) and 13 MJup (assuming an age of 10 Myr). However,

our membership algorithm is expected to miss highly extincted objects (AV & 3 mag) and sources

with near-infrared excess related to the presence of circumstellar material.

Membership validation

The membership classification mostly coincides in the Hipparcos–Gaia and Gaia–DANCe

studies, in the magnitude range where both catalogues are complete. The small differences be-

tween catalogues can be attributed to the different information provided by each of them. We

used the Gaia membership analysis, with the additional information on the parallax, to estimate a

contamination rate of 8% on the DANCe membership in the magnitude range 9 < J < 14 mag as-

suming that the Gaia selection is perfectly clean. Similarly, the comparison between the Gaia and

DANCe samples over the common luminosity domain shows that one third of the objects identified

with Gaia are not recovered with DANCe because of either missing photometry, high extinction

or near-infrared excess likely related to the presence of a circumstellar disc. Therefore, the com-

pleteness of our census is expected to be better in USC than in Oph since extinction is much lower

and near-infrared excesses related to discs should be less frequent given the more advanced age

and timescale for disc decay.

We note that at J ∼ 10 mag (see Fig. 2) there are some contaminants. These are sources

identified with the DANCe membership analysis, therefore, using only the proper motions and

photometry (no parallaxes). The proper motions are compatible with the proper motion distribution

of the association and that is why they are classified as members. Additionally, since they are
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bright stars, their photometry saturates in many bands so we have little photometric information.

In any case, these represent a 1% of the members which is within the contamination rate that we

estimated.

We recovered the majority of members previously reported in the literature17, 42–45. Supple-

mentary Figure 4 shows a comparison between the members reported by previous studies and

the members found in this study, using the photometry and proper motions we measured in this

work. In this Figure, we only considered studies sensitive to FFPs. We missed around 80 substel-

lar members previously reported in the literature, most of which are in Oph, are highly extincted

or host circumstellar discs (as can be seen in the colour-magnitude diagrams). Besides, some of

the members reported in the literature are discarded by our membership analysis because of their

inconsistent proper motions. This is especially significant in a recent study46 where only half of

their members are identified in our astro-photometric analysis. The other half are either classified

as non-members (having photometric and/or proper motion measurements inconsistent with the

association) or undetected. In this study, we add ∼800 of new members, 70–170 of which are

FFPs, depending on the age assumed.

The mass function

Distances

We used Kalkayotl*91 to infer Bayesian distances for all the members with a parallax mea-

surement in the Gaia DR2 catalogue. We used a Gaussian prior with a locus and scale of 145 pc

*https://github.com/olivares-j/kalkayotl
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and 45 pc, corresponding to the median and three times the standard deviation of the distribution

of distances obtained inverting the parallax. For the sources in the DANCe catalogue, without

a parallax measurement, we sampled the distance from the cluster distance distribution obtained

with all the Gaia members.

Masses

We combined the apparent photometry (grizyJHKs) and the distance estimate of each star

to obtain absolute magnitudes. These were compared, in a Bayesian framework, to theoretical evo-

lutionary models to infer the posterior distribution of the mass and extinction of each source with

Sakam†51. This algorithm ignores any possible source of error related to the theoretical evolution-

ary model chosen by the user. The model does not include effects on the variability of the source

due to binarity, activity, or other factors. These effects eventually end up included in the extinction

estimate, enlarging its uncertainties. Finally, the mass and the extinction are degenerated but at

least half of the planetary-mass objects we found are in regions of low extinction, favouring their

planetary nature.

We had to use different models for the high and low-mass regimes as there is no single

set of models covering the entire mass range of our members. We combined the PARSEC-

COLIBRI‡ models48 and BHAC15§ models47 which cover the high and low-mass range of our

members, respectively. We find that both grids of models agree fairly well around 0.5 M� and de-

cided to use the masses inferred from the BHAC15 models below 0.5 M� and the masses inferred

†https://github.com/olivares-j/Sakam
‡http://stev.oapd.inaf.it/cgi-bin/cmd
§http://perso.ens-lyon.fr/isabelle.baraffe/
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with the PARSEC-COLIBRI models above 0.5 M�. In Supplementary Figure 5 we show two ex-

amples of the best-fit spectral energy distribution models obtained with Sakam for a brown dwarf

and a planetary-mass object. The complete final list of members with the masses and extinctions

inferred with Sakam is available at the CDS.

Magnitude and mass distributions

To obtain the magnitude (mass) distribution, we sampled the individual magnitude (mass) of

each source with a Gaussian centred at the measured magnitude (mass) and a standard deviation

equal to the uncertainty. Then, we defined a grid between the least and most bright (massive) ob-

ject in our sample and added the contribution of all the sources to each magnitude (mass) bin. We

convoluted this distribution with a Gaussian kernel density estimation (KDE) with a bandwidth

chosen according to Scott’s92 and Silverman’s93 rules. We estimated the uncertainties in the mag-

nitude (mass) function with a bootstrap of 100 repetitions and reported the 1σ and 3σ confidence

levels.

Data availability The data that support the findings of this study will be available at the CDS

after the reviewing process.
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Figure 1 Sky distribution of stars (gold triangles), brown dwarfs (blue squares), and
FFPs (red dots) discovered in this study and classified assuming an age of 5 Myr. The
dashed ellipse indicates the area analysed with the DANCe catalogue (see methods).

The background images are in the optical (credit: Mario Cogo96) and at 857 GHz (credit:
Planck97).
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Figure 2 Colour-magnitude diagram of the members of USC and Oph identified in this
work: previously known members (gray) and new members (black). The error bars

represent the uncertainty in the photometry reported in the Gaia and DANCe catalogues.
The BHAC15 isochrones47 (solid lines) and the PARSEC-COLIBRI isochrones48 (dashed
lines) at 3 Myr (red) and 10 Myr (blue) as well as the extinction vector are overplotted.
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Table 1: Planetary occurrence rate for different studies.

Method POR (%) Mass Separation SpT star fFFP ejected
fFFP ejected
fFFP observed

RV12,55 2.1 ± 0.5 4-13 MJ 0.1-100 AU solar type 0.016-0.021 23–130%

DI57 0.6+0.7
−0.5 5-13 MJ 30–300 AU BAFGKM 0.005-0.006 7–38%

DI94 1.83+5.76
−0.62 5-13 MJ 30–300 AU BAFGKM 0.014-0.018 20–115%

ML58 1 − 2 0.007–0.02∗ 0.2–5 ΘE all 0.008-0.02 11–125%

RV+DI+ML95 ∼ 4 1-13 MJ
† 2–1000 AU all 0.03-0.04 44–250%

Col. 1: planet detection method: radial velocity (RV), direct imaging (DI), microlensing
(ML), Col. 2: planet occurrence rate (POR), Col. 3: mass range of the planets, Col. 4:
separation or semimajor axis, Col. 5: spectral types of the primary body, Col. 6: estimated
fraction of ejected FFPs using Eq. 1 and assuming funstable = 0.75− 1 and nejected = 1 (see
main text), Col. 7: estimated percentage of observed FFPs which were ejected from
planetary systems. The conservative ranges we provide include both the uncertainties
from our observations and current knowledge of planetary systems.
∗ mass ratio between the planet and star mass (q).
† our observations are not sensitive to masses between 1–4 MJ and thus, the POR is
overestimated with respect to our observations.
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Figure 3 J apparent magnitude distribution (top) and mass function (middle and
bottom) of the members of USC and Oph. The shaded regions indicate the 1 and 3σ

uncertainties from a bootstrap (top) and the dispersion due to the age (3–10 Myr, middle
and bottom). The mass functions from simulations7,8 are overplotted on our

observational mass function (bottom). All the functions are normalised in the mass range
0.004–10 M�. The hydrogen (75 MJup) and deuterium (13 MJup) burning limits are

indicated by the vertical dotted lines according to the BHAC15 evolutionary models47 and
assuming an age of 5 Myr.
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5. Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature

548, 183–186 (2017).

6. Chabrier, G. The Initial Mass Function: From Salpeter 1955 to 2005. In Corbelli, E., Palla,

F. & Zinnecker, H. (eds.) The Initial Mass Function 50 Years Later, vol. 327 of Astrophysics

and Space Science Library, 41 (2005).
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Supplementary Information

Supplementary Figure 1: Estimated proper motion error as a function of i magnitude for the
DANCe catalogue. We note that whenever there is a proper motion measure from Gaia we use
it. This explains the change in precision observed at i ∼ 21 mag.
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Supplementary Figure 2: Density of sources per 0.2 magnitude bin as a function of magnitude for
all the sources in the DANCe catalogue.
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Supplementary Figure 3: Vector point diagram (left) and parallax–proper motion diagram (right) of
USC and Oph. The members are shape- and colour-coded according their origin: Gaia and DANCe
analysis (red circles), only Gaia analysis (blue left-pointing triangle), and only DANCe analysis
(green right-pointing triangle). The error bars represent the astrometric uncertainties reported in
the Gaia and DANCe catalogues.
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Supplementary Figure 4: Vector point diagrams (top) and colour-magnitude diagrams (bottom)
of the members found in this study (grey dots) and the members reported in previous studies1–5

(coloured markers). The members in common are indicated by a black edge line. The error bars
represent the observational uncertainties in the Gaia and DANCe catalogues for the members pre-
viously identified in the literature and discarded by our membership analysis. We note that our
study is not sensitive to highly extinct areas or the detection of sources with moderate/significant
near-infrared excess.
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dwarf mass object (left) and a planetary-mass object (right). The photometric observations (black)
and the dereddened observations (blue) are indicated. The error bars represent the photometric
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for the best-fit models are shown (gray).
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Supplementary Table 2: Performance of the membership analysis.
Hipparcos Gaia DANCe

pin popt Memb CR TPR popt Memb CR TPR popt Memb CR TPR
(%) (%) (%) (%) (%) (%)

0.5 0.97 116 17 92 0.95 2 762 1.1 99.2 0.77 2 556 2 98

0.6 0.96 108 7 95 0.96 2 698 0.9 99.2 0.78 2 458 2 99

0.7 0.94 112 7 96 0.96 2 678 1.0 99.4 0.83 2 342 1.5 99

0.8 0.95 103 5 96 0.96 2 661 0.9 99.6 0.88 2 185 0.9 99

0.9 0.96 78 3 98 0.96 2 623 0.9 99.6 0.83 2 086 0.9 99

Performance of the membership analysis obtained with different internal probability
thresholds (pin) for the three catalogues considered, namely Hipparcos, Gaia, and
DANCe. For each internal probability threshold (pin) we show the corresponding opti-
mum probability threshold (popt), number of members (Memb), contamination rate (CR)
and true positive rate (TPR). The popt, CR, and TPR were obtained with synthetic data
(see text).
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